THE ab initio OPTIMIZED GEOMETRY OF THE 6-SILYLCYCLOHEXADIENYL RADICAL 1)

Mitsuo KIRA and Hideki SAKURAI

Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980

The optimized geometry of the 6-silylcyclohexadienyl radical calculated by the energy gradient method with the STO-3G basis set shows that the radical has a distorted ring structure with the energy minimum at 4.3° of out-of-plane angle.

The key intermediate in homolytic aromatic silylation is 6-silylcyclohexadiently radicals $(\frac{1}{2})$, the existence of which has been evidenced by an ESR experiment.²⁾

$$R_3 \text{Si} \cdot + \bigcirc \longrightarrow \bigwedge_{H}^{R_3 \text{Si}} \longrightarrow R_3 \text{Si} \bigcirc \longrightarrow \bigcap_{H} \bigcap_{H}$$

In a previous paper, $^{3)}$ we have shown experimentally that 6-trimethylsilylcy-clohexadienyl radicals (1 a, R=Me) have a bent structure at the energy minimum with the 6-trimethylsilyl group at the axial position. The CNDO/2 calculation for the 6-silylcyclohexadienyl radical (1 b, R=H) also indicates that the energy minimum is at the bent structure with out-of-plane angle of 4 °. Very recently, however, a number of substituted cyclohexadienyl radicals have been investigated with the ab initio MO method under a planar ring constraint in relation to the Birch reduction. Since our previous CNDO/2 calculation used a minimized energy geometry determined by the INDO calculation, it seems to us important to examine the theoretical geometry of cyclohexadienyl (1 2) and 6-silylcyclohexadienyl (1 b) radicals under only 1 C constraint.

Standard *ab initio* UHF-SCF MO calculations were carried out with a modified version of the GAUSSIAN 70 programs, $^{6)}$ where the H $_{3}$ Si group was placed in a staggered conformation. Geometries were optimized by using the energy gradient method with the STO-3G basis set. The geometric parameters and total energies for the optimized geometry of 1b are shown in Figure 1. The total energy of 1b was also calculated by using the 6-31G basis set for the optimized geometry. The distortion angle, θ , was calculated as 4.3°. A geometrical optimization, starting with the distorted cyclohexadienyl structure with an equatorial SiH $_{3}$ group, gave no minimum at around θ =4° to lead to nearly planar ring structure (θ =0.4°), whose total energy was a little higher than that of the structure depicted in Figure 1: Δ E=0.12 (STO-3G) or 0.25 kcal/mol (6-31G//STO-3G).

The calculation shows a similar distorted ring structure for the parent cyclohexadienyl radical (2) at the energy minimum with θ =3.4°, but the energy difference

from the planar structure⁴⁾ is so small ($\Delta E=0.036$ kcal/mole) that 2 should be taken to be essentially planar structure with a very shallow energy minimum.

These findings are in good agreement with the previous result from ESR experiments and CNDO/2 calculations, indicating the importance of σ - π conjugation between the C-Si bond and the π system. The distorted structure of the 6-silyl-cyclohexadienyl (as well as 6-germylcyclohexadienyl) radicals with considerable spin delocalization onto the C-Si (and C-Ge) bond may be related to the reversibility of the addition of silyl (and germyl) radicals to an aromatic ring. We will discuss this problem in detail in a forthcoming paper.

Figure 1. Optimized UHF/STO-3G structure and total energies (E, hartrees) for 1b. Bond lengths are in \mathring{A} , and bond and dihedral angles are in degrees.

Acknowledgment

We are very grateful to Professor K. Morokuma and Mr. M. Hanamura for assistance in $ab\ initio$ MO calculations with the IMS version of GAUSSIAN 70 program on a HITAC M200 computer at the Institute of Molecular Science, Okazaki.

References

- (1) Chemistry of Organosilicon Compounds 158.
- (2) M. Kira and H. Sakurai, Chem. Lett., 927 (1981).
- (3) M. Kira and H. Sakurai, J. Am. Chem. Soc., 99, 3892 (1977).
- (4) A. J. Birch, A. L. Hinde and L. Radom, J. Am. Chem. Soc., 102, 4075 (1980).
- (5) M. B. Yim and D. E. Wood, J. Am. Chem. Soc., 97, 1004 (1975).
- (6) W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton and J. A. Pople, GAUSSIAN 70, Program 236, QCPE, Indiana University, 1974.
- (7) (a) A. Komornicki, K. Ishida, K. Morokuma, R. Ditchfield and M. Conrad, Chem. Phys. Lett., 45, 595 (1977); (b) S. Kato and K. Morokuma, ibid., 65, 19 (1979).
- (8) The 6-31G basis set for silicon is taken from M. S. Gordon, Chem. Phys. Lett., 76, 163 (1980).
- (9) H. Sakurai, J. Organometal. Chem. Library, <u>12</u>, 267 (1981).